870

el and with an isotropic exchange interaction. The
contribution to the anisotropy per ion of Ru* in
YIG is very large, about 2 to 3 times larger than
that of Co®*. The value of v/¢ is negative in agree-
ment with ESR measurements on YGaG and amounts
to —1. The exchange interaction between Ru®* and
Fe® is found to be substantially larger than that
between the iron ions. It should be noted that the
error due to the relatively large uncertainty in the
concentration of Ru* ions does not affect the ob-
tained values of v/£ and gH, because they are de-
duced from the ratio AK,/AK,. It may be men-
tioned that these results do not only apply for the
ruthenium-doped YIG, but in the main also for ruthe-
nium-doped lithium ferrite.? Here, AK, also is
positive and AK, negative, and thus the value of

B. GIOVANNINI

e

v/ is negative.

Above room temperature, the agreement of theory
and experiment is not as good, but in this range it
is no longer justified to neglect the temperature de-
pendence of the exchange field,

By additionally incorporating Ca, Mg,!” or Zn,?
it could be found that the concentration of Ru** ions
is negligible and, therefore, Fe** ions are probably
present, 2%
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Starting with an Anderson Hamiltonian for a metallic system with impurities, adding to it a
spin-orbit scattering term for the conduction electrons, and performing a Schrieffer-wolff
canonical transformation, one induces an s-d model which takes into account spin-orbit scat-

tering in a consistent fashion.

The Hamiltonian derived in this way is used to discuss the alter-

ation of the Kondo effect to lowest order in perturbation theory (for T> T,) and the EPR resid-

ual linewidth.

I. INTRODUCTION

Since Kondo’s! discovery of a logarithmic diver-
gence in perturbation theory for the scattering of

conduction electrons from magnetic impurities in
metals, a large amount of experimental and theo-
retical work has been devoted to this problem. 2

Recently, Heeger? suggested that the Kondo effect
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can be interpreted as arising from an indirect
electron-interaction via the magnetic impurity.
From this point of view, he speculated that spin-
lattice relaxation of this localized spin should de-
stroy this effective interaction, and therefore the
Kondo effect.

As demonstrated by McElroy and Heeger, * one
can induce a spin-lattice relaxation of a localized
spin by introducing impurities in the lattice. This
arises from the admixture of conduction electrons
wave function, as will be demonstrated from a
more general point of view in this paper.

To test these ideas further, Gainon and Heeger*
doped a CuMn alloy (a Kondo system with
T,=e V¥~ 05°K) with Pt impurities and
showed experimentally that the anomalous term in
the resistivity fitted a

p(T)~1n(T? + 6%) 1)

law. Surprisingly, 6 is not a linear function of the
concentration of the heavy impurities used to induce
spin-orbit scattering, but a more complicated func-
tion. The purpose of this paper is to discuss a
possible explanation for this behavior.

In Sec. II, the effect of impurities on the localized
wave function is discussed, and an effective Hamil-
tonian is derived which describes the relaxation of
the localized spins. In Sec. III, this Hamiltonian
is used to calculate the self-energy of the localized
level. In Sec. 1V, it is demonstrated that this self-
energy is essentially equal to the 6 measured by
Gainon and Heeger. These results are discussed
in Sec. V; in particular it'is demonstrated that only
part of this 6 can be seen in an EPR experiment.

II. DERIVATION OF THE EFFECTIVE
HAMILTONIAN

We want to discuss the effect of heavy impurities
on the magnetic-moment problem, for example the
effect of Pt impurities on the CuMn system. We
start from a slightly modified Anderson Hamiltonian

JC=3Cy +3Cgoy 34 =3Cy+3C, , (2)
3@0=Z€inﬁq+ UnanndA+EZ>ndo’ (3)
ko [
5(:":2 VEaCEGdo +c.c., (@)
k,o
ngd T
3C80= Z"WEEIUGI(R i)'chcf'a' s (5)

’qb'
Wiiluvl (ﬁi) = i (E X-l;') .qu'b(lk_k' I )e+i(E-E')Ri . (6)

3, is the Anderson Hamiltonian, and all quantities
are as defined in his paper. 3y, is the _s_pin—orbit
interaction of the conduction electrons, R, denotes
the sites of the heavy impurities, and b(1k|) is the
spin-orbit potential. As demonstrated by Schrieffer

and Wolff, ® the Hamiltonian 3, is not written in
the best possible variables, at least from the his-
torical point of view, when one discusses the ex-
treme magnetic limit U> 7N(0)|VI2 [where N(0)
is the density of states at the Fermi surface and
V is an average matrix element { Vi, )a,l-

Going to the new basis functions,

= _ -8 S =, _,-8 s
d,=e>d,e®, ci,=ecpe , ()

chosen so as to eliminate 3, to the first order
from 3C,, one gets the result that 3¢, is equivalent
to an exchange-type Hamiltonian (with a negative
exchange constant) written in the new variables
dgy Cior

34 (Cia do) =T o(Coy do) +3 ex (i, do)
+higher-order terms, (8)
where 3¢, is defined by (3) and
K==t Z

e te
-~ ,Jik'(daoou'do‘)(c £s0ss’ Civge) -
,£%,0,05 8,8

(9
If one assumes, as is generally accepted, that the
Anderson Hamiltonian describes the fundamental
physics of the problem, and if one wishes to dis-
cuss the Kondo effect or EPR measurements in
terms of an exchange-type Hamiltonian when spin-
orbit scattering is present in the system, one has
therefore to consistently start with the Hamiltonian
(2) and then transform it in terms of the variables
(7). To do this we simply calculate, in analogy
with Ref. 6,

¥=e%ce™ ,
taking

3 T
S=2Z ———“‘—sr_e N Cgedy—C.C.
koo o
where the quantities are as defined in Appendix A.
Keeping only the dominant terms, one gets” (see

Appendix A)
FC=1C o +3C g +FCgo +TCho +3CLL ao

where 3C,, is the usual exchange-type Hamiltonian
[Eq. (9)] and®

-y
W= 20 Wigee (R ) Cio dgu mS.gatc.C.

kooo’ i

(11)

o= 2

aa’oo’i

ot R )1 odind o dy +c.c., (12)

where W and W'’ are given by
Wéaou’ (Ri)= —Z: Witroor (Ri) Vi'd (si' - €a)-1 ’ (13)
kl

~

*
e (R =% ZZ Vig Vieg
i,i

—€)ep —€40)
(14)
One might be tempted at this point to perform a

* -
R WEE’UO" (Ri) (€f
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second canonical transformation S to eliminate

3¢, which indeed looks very much like 3¢,. One

of the particular properties, however, that gives
the Schrieffer-Wolff transformation a good physi-
cal sense is that the total magnetization operator
M commutes with S (when the conduction electron
and the localized electron have the same g value),

[M, S]=0.

This ensures that the magnetization described by
3¢o(C,, d) still obeys a Curie law plus a Pauli sus-
ceptibility. .

In contrast, S does not commute with M (as can
be seen by explicit calculation) and therefore the
Kubo formula for the susceptibility of the conduction
electron, for instance, written in the basis functions
é,=e5¢,eS has a very complicated form.

III. CALCULATION OF THE SELF-ENERGY OF
THE LOCALIZED LEVEL

As we shall see in Sec. IV, the function 0 mea-
sured by Gainon and Heeger [Eq. (1)] is given by
the self-energy of the localized level for U=0.
More precisely, if one defines

Slw)=—if at e™ { [d, 1), a7 (0)])) 6(r)
= [UJ -E- Ed(w)]-l )
6=~ 2ImZ,(E)

The self-energy Z, has three sources, 3¢, 3C,, and
30,

Let us first lookat ¥¢;,. Taking into account the
definition of #5, [see Eq.(A4)], one finds

(15)
(16)

u=0 *

Hgo =Z: W:'.a.q(f{—i)dzd_q +c.c.

T

+ 22 W oo RINE e +C. C. %))
o,
Since (n,_,n,) =0 in a magnetic state, we can write

the second part of Eq. (17) as
~2 W Rny,+c.Cy

which is just a renormalization of E. We there-
fore write

s~ W R,)dtd, +c.c. (18)
with
W (R =W, (R,) . (19)

As for 3¢/, in order to simplify the problem, we
shall treat it in the Hartree-Fock approximation,
and write

-
T
5o ™ 20 Wgoqr (R;)Chyd,s (ngq ) +c.c.
kaoo’ i

~1 r Wéawl(ﬁ,)czod,,m.c. (20)

Kaoo’ i

These approximations are justified because we

| o

only want to investigate orders of magnitude and
temperature and concentration dependence.

We turn now to the evaluation of Z,(w), using
¥Cox, 3Con [Eq. (18)], and 3¢/, [Eq. (20)]. An im-
portant point here is that the simple average over
the heavy impurities of the matrix elements Wi, -
and W)’ vanishes because of the form (6). We have,
therefore, to coherently average over pairs of im-
purities, as in the resistivity problem. ®

We now write the self-energy as a sum of three
terms!?

Tg=Z+I{+ I (21)

"

due, respectively, to the interactions ¥y, G,

and ¥C,,. These three terms are shown pictorially

in Figs. 1-4. Their calculation is straightforward,

using standard perturbation theoretic methods. ®
The results are

(22)

where c is the concentration of heavy impurities
and

',
Zg=tve,

v=4NONZ [ ErW, qor (F) Wikioo ), (23)
al

Zl=cw/(w-E-Z,) , (24)
where
_______ >—.——_-—__
3 5 A K L
>
FIG. 1. Perturbation theoretic symbols: (a) bare d-

electron propagator; (b) renormalized d-electron prop-
agator; (c) bare conduction-electron propagator; (d)
renormalized conduction-electron propagator; (e) inter-
action line corresponding to 3%,; (f) interaction line
corresponding to 3C%,; (g) interaction line corresponding
to HCeye
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FIG. 2. Self-energy X/ of the localized electron. The
cross in the interaction line means coherent averaging
over two impurities.

w=N [ d% WIF)Wr* () . (25)

Finally, (we put the Boltzman constant equal to
unity)

e =izT (26)
is one-fourth of the Korringa relaxation, where
z=4m[NOW .

Putting together Eq. (22), (24), and (26), we get
the self-consistent equations (on the energy shell)

Z4(w=E)=cw/[- Z4(w - E)] +ivc+izT,  (27)
which gives
Rezd(w= E)=0 ) (28)

ImZ,(w = E) =5 (2T +ve) +3[(2T +ve)? + dcw] V2 .

This is the main result of this paper. Before dis-
cussing it, we must first show that ImZ, = 6.

IV. RELATION BETWEEN THE SELF-ENERGY AND 6

In order to discuss the Kondo effect by perturba-
tion theory, Brenig and Gotze introduced an elegant
representation'! which envisions the magnetic im-
purities as a dilute gas of (in the limit) infinitely
heavy particles. In absence of spin-orbit scatter-
ing, the transformed Anderson Hamiltonian (8) does
not contain any transfer (or mixing terms) to order
V%, I one neglects these higher-order terms, the
localized and itinerant electrons form two distinct
systems; one can then think of the localized elec-
tron as a different kind of particle, with its own
chemical potential. The extreme dilution limit is
then equivalent to the magnetic limit, the pseudo-
particles being kept apart by the dilution rather
than by a potential U.

The self-energy of these pseudoparticles is then
clearly to be identified with the one-particle self-
energy of the d electron. Since the terms propor-

FIG. 3. Self-energy Zj of the localized electron.

FIG. 4. Self-energy T of the localized electron.

tional to U in this self-energy are proportional to
% (c; is the concentration of d electrons), one can
put U=0 in this calculation.

In our case, this procedure would be rigorously
correct if 3, + 3¢, did not contain any transfer
terms. Since 3¢, does contain such terms, how-
ever, this procedure is only approximately correct,
but it seems clear from a physical point of view
that it is a good approximation. It corresponds to
taking into account only the most important cor-
relations induced by U, namely, those contained
implicitly in 3C,.

In the Brenig-Gotze representation, the exchange
Hamiltonian (8) is written

=3, +3C; +3C,; » (29)
¥ Z,Z: € £oko » (30)
k0
5 =BZ WsDh b3 (31)
y K
> -, >, + U
3(33‘ =i E'Z: , <k0" PK l VJ {k U,, )Y Kl>b3xbi'k'cfaci'o' ’
3 DA
(32)
(1;0, pklV, |1:’o', Pk’ =58 i 3+ oot §“K: . (33)

Perturbation theory for the conduction-electron
self-energy Z(k, z) is straightforward, and leads,
for the lowest-order divergent contribution, to
the Feynman diagrams shown in Fig. 5. To each
of these Feynman diagrams corresponds six Gold-
stone (time-ordered) graphs. As shown by Brenig
and Gotze!? only part of these graphs contribute to

™\ (N

I \\ ' \\
SENE
| | A
Y P/
} // l //

FIG. 5. Lowest divergent diagrams., In these dia-
grams -->-- represents a heavy particle in the Brenig-
Gotze picture.
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the self-energy in lowest order of the magnetic
impurity concentration c¢;. These (time-ordered)
graphs are shown in Fig. 6. Calculating these
graphs with the usual rules, one gets the InT law
for the imaginary part of the self-energy E('ﬁ, T)
when 7> z.

As we have seen in Sec. III, 3¢, and 3y, induce
an effective “two-body interaction” due to the
coherent averaging over impurities. In addition
to self-energy corrections, we should therefore
consider vertex corrections. We will assume,
however, that these will essentially renormalize
J, and therefore alter the Kondo temperature. This
was not observed in experiment, and we will there -
fore not consider these terms in the present work.

We now slightly generalize Brenig and Gotze
calculations to allow for spin-flip scattering.
Specifically, we write Lorentzian one-particle
density of states for both the conduction electron
and the heavy particles,

ImZ, /7
(w - €, -ReZ,)?+(ImZz,)? ° (34)

A,(k w)=

Im>,/m
= '——‘——_d——_‘———‘ 3’

(w — wz)?+ (ImZ,)? (35)
and calculate the first divergent terms in the con-
duction-electron self-energy. One finds (see
Appendix B) for the anomalous term in the resis-
tivity

p(T)~1n[T 2 +4(Im=,)?] , (36)

Ai(ﬁy (1))

while Z, drops out of the result.

V. DISCUSSION

The coefficients v and w are difficult to calculate
from first principles with meaningful accuracy,
and we will therefore consider them as parameters
to be determined experimentally.

It is easy to see that a form like the one given in
Eq. (28) fits roughly the experimental curve of
Gainon and Heeger. But a detailed comparison is
not possible at this point, for the following reasons:
Our calculation predicts that 6 should be both con-
centration and temperature dependent, whereas
Gainon and Heeger give 8 as a function of the con-
centration only. Note that at zero concentration

In(T2%+22T%)Y2=InT +% In(1 +2%) ,

and the Korringa term does not contribute to the
temperature-dependent part of the resistivity. At
finite concentration this argument does not work,
however, and since z~0. 2 in CuMn, one expects
this term to have some influence on the experi-
mental results. One seems, therefore, to be in
need of a more detailed experimental analysis of
6(c, T).

It is interesting to note that 6(c, T) is very dif-

ferent from the linewidth one would measure in a
resonance experiment. First 42T is unbottle-
necked and therefore usually larger than the res-
onance Korringa linewidth.  Second, 3¢, alone has
no influence on the EPR resonance, because
[M, 5e%]=0. (37)

Only when another relaxation mechanism is at work
can this “bottleneck” be broken, but then the term
(wc)Y? is probably small anyway.

A comparison of our results with the calculation
of McElroy and Heeger? is in order. Their expres-
sion corresponds to

cw
”= 8
ImZ} Im(—w-E)—iAA , (38)
where
A, =TN(0)| V|2 (39)

is the width of the d state for the Anderson Hamil-
tonian. One can see, however, by the more de-
tailed analysis given above that it is the width of
the transformed states

d=eSdes
that should enter Eq. (38), and this leads to the
self-consistent Eq. (24).

In conclusion, the main contribution of this paper
is to show that spin-orbit scattering induces a
spin-flip relaxation rate on the localized d level,
and that this rate alters the Kondo anomalous term
in the resistivity. Thealteration of the Kondo term is
given by Eqgs. (28) and (36). The quantity z appear-
ing in Eq. (27) is given by z =47[N(0)J]?, whereas
the quantities v and w are to be determined experi-
mentally. Since, however, v is also related to the

,L \\ | \\\ } \
|

™ ! Y o]
} / / A 7
/ / /
oL/ / |/

Time-ordered graphs corresponding to the
Feynman graphs shown in Fig. 5.

FIG. 6.
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residual linewidth in an EPR experiment,
(1/T)res = 2vc

there is only one free parameter w, and the theory
can be meaningfully tested.
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APPENDIX A

We perform a Schrieffer-Wolff canonical trans-
formation on 3C

3¢ = e53ce™S (A1)
with the condition
(3¢, S] =3¢, , (A2)

where 3¢, and 3¢, are defined in Eqgs. (3) and (4).
This leads to®

V.

S=2 —H_po g _cec. , (A3)

foa €SE—€q
where
E+V, a=+ Mo » a=+
o

€a= ndﬂ— (A4)

E, a=- 1-n4,, a=-

are as defined in Ref. 6.
With condition (A2), Eq. (Al) has the following
expansion:

56:360 +3€so +%[S’ :}Cv] +[S, cho "‘%[S’ JC“]] toeee (A5)

The third term on the right-hand side gives the
usual exchange Hamiltonian. It might seem in-
consistent to neglect the term 3[S, [S, 3¢,]] and re-
tain the term 3[S, [S,3C,]]. These two terms cor-
respond to two completely different physical ef-
fects. The former, if taken into account, would
describe spin-fluctuation effects and its importance
depends on the ratio V?N(0)/U, whereas the latter,
depending on the ratio [VN(0)]?w/U, is important be-
cause of the peculiar dependence on c'2 which it
produces in the self-energy [Eq. (28)]. Both terms
are potentially important, but we are, in this paper

interested only on the effect of the heavy impurities .

on the Kondo effect, not the effect of the spin
fluctuations, which is a separate and difficult
problem. 3

The calculation of the fourth term is straight-
forward and gives

[S, Jcso] =JC;0 )

ZC;oz - E Wéauu’(ﬁl)cicrdo'n:-o-' +C. C. , (Aﬁ)

kaoo’ i
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where

Whaor (Ri)= =2 Wigeo: (R)) Veralegr —€2)?

. (a7

3[S, [S, ] 1=304 +365 (A8)

73 re 5 1 ’
L= 20 Wl (R)ni ding.,ds +c.c.

aa ‘oo’
where 49
1 Vi Vi
Wit (R~ L 5 ViV
aq 00( f) 2;;'((i—€a)(EE:—€a')
X W (R (A10)

e _ Q1 -y 1
sept= 20 WES.(R)ckCiiord.gd, +C. C.
kk’oo’, i
12 (2) s
+ .._Z; WuEl'('ao’(Ri)nda-ccguci'o’+c' c.
akk‘’co’ i
' 3) (B t
+ .Z; sz'i',’oo'(Ri)dtodacioci'a' +C. C. ,
Ek’oo’i
(A11)
where

- 1 Vig Vi
WIIEI'(].)J(R )=__ Z} kd Y k’'d
ktos ! 200 (g —€u)€ge —€4 )

X Wi’ﬁ"o'-o(ﬁi){a’ba,-_ aéa',-} )

. - (A12)
WH® (R)=—= Yk Vgera
akk’ oo ( i) 2 EZ,E (gi_ea)((kﬁ.-ea)

XWEigogoRY), (A13)

1 Via Vg
21“'11‘0['0‘: (€§ _ed)(€i” —(al)

X Wiigrige _c(ﬁ‘)(aﬁm,’_+ a’d, ).
(A14)
Lt

We will neglect 3¢’ altogether for the following
reasons: the first term, because it involves two
electron transfers and occurs only in higher-order
diagrams, the second and the third because they
are essentially of the same type as 3C4, and C,,
respectively, but smaller by a factor of the order
V2/E% and W/E;, respectively. We keep, however,
the term (A9) because it is of a qualitatively differ-
ent type than 5C,, 32, or ¥C.,.

APPENDIX B

The rules for calculating a time-ordered diagram
contributing to (K, z) and containing dressed lines
are the following.

(i) To each propagator line, associate a wave
vector, a spin direction, and a frequency. Wave
vectors and spin are conserved at each vertex.
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(ii) To each upward (downward) running internal
electron propagators carrying frequency w and wave
vectors k, associate a factor

[1-f(0)]A (ko) [ - f, (w)A(kw)] .

Correspondingly to each upward (downward) running
internal heavy-particle propagator carrying fre-
quency w and wave vector p, associate a factor

[1—fi(w)]Ai(5: w)[—fi(w)Ai(By w)] .

In this, A, and A; are the corresponding single-
particle density-of-states function

]

B. GIOVANNINI

54

fo(w)=[1+eP@ 4] £ (w)=[1+ef@s] |

(iii) Associate with each cut an energy factor N,
where N ! is the sum of the frequencies of the down-
ward running propagators minus the sum of the
frequencies of the upward running propagators. The
external line must be considered as closed and
carrying frequency z.

(iv) Include the vertices.

(v) Sum over the internal variables, and multiply
the graph by (-1)%, where L is the number of fer-
mion loops.

Applying these rules to Fig. 2(a) gives

28= =I5 +1) [ dwydwydwsdw,dws[1 - f,(w)][1 = fo(w,)] Filwe) [1 = Fi(w][1 = Fi(w] A (Ky, 1) A (K, wp)

X A;(py, wg)A,(py +K -k, w4)A,(l—<.+§1—l_{’2, wg) {2 — Wy + wy = w, } {2 = w, — W+ wg } (d %y d *kyd py)/(27)°

where
= ImZ, /7
Ak, w)= (w ~€g — ReZ,)% + (Im3,)? ’ (B1)
Ay(p, @) Im?, /7 (B2)

" (W= wg )+ (Imz,)? ?

and Z, and Z; are the self-energies of the conduction

electrons and of the heavy particles, respectively.
If one restricts the integration for the conduction

electron to one band, it is clear that in the limit

m -, the variables EI and l_fz can be neglected in

A;. Furthermore, for m—- =, and for Z;<T,

[
fi(w3)~fi(w§1), fi (w4)~ fi(wi+ 51-121);

f{(ws) Nfi(wﬁ"' El "Ea)

to a good approximation. All the remaining inte-
grals are then trivial, and one gets, for w <<T and
in lowest order of ¢; the magnetic impurity
concentration,

Im%%%(T)~ In(T?% + 4Im=?) , (B3)

while %, drops out of the result. The other dia-

grams give similar results.
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